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■ Abstract Physiological and pharmacological evidence both have demonstrated
a critical role for voltage-gated sodium channels (VGSCs) in many types of chronic
pain syndromes because these channels play a fundamental role in the excitability of
neurons in the central and peripheral nervous systems. Alterations in function of these
channels appear to be intimately linked to hyperexcitability of neurons. Many types
of pain appear to reflect neuronal hyperexcitability, and importantly, use-dependent
sodium channel blockers are effective in the treatment of many types of chronic pain.
This review focuses on the role of VGSCs in the hyperexcitability of sensory primary
afferent neurons and their contribution to the inflammatory or neuropathic pain states.
The discrete localization of the tetrodotoxin (TTX)-resistant channels, in particular
NaV1.8, in the peripheral nerves may provide a novel opportunity for the development
of a drug targeted at these channels to achieve efficacious pain relief with an acceptable
safety profile.

INTRODUCTION

Voltage-gated sodium channels (VGSCs) play a fundamental role in the excitabil-
ity of all neurons. They are located in the plasma membrane and mediate the influx
of sodium ions into the cell in response to local membrane depolarization; sodium
influx results in the generation of the action potential. Alteration in VGSC ex-
pression and/or function thus has a profound effect on the firing pattern of sensory
primary afferent neurons as well as neurons in the central nervous system. Injury to
sensory primary afferent neurons often results in abnormal, repetitive discharge or
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exaggerated response to subsequent sensory stimuli. Such exaggerated response is
believed to contribute to chronic inflammatory and neuropathic pains. Central pro-
jection neurons that relay sensory signals to the sensory cortex may also become
hyperresponsive, a process termed central sensitization. Both physiological and
pharmacological evidence implicate a critical role of VGSCs in the development
and maintenance of hyperexcitability observed in primary afferent neurons follow-
ing nerve and tissue injury. Importantly, use-dependent sodium channel inhibitors
are clinically effective in the treatment of many types of chronic pain. This review
focuses on VGSCs in sensory afferent neurons and their contribution to nerve and
tissue injury-induced pain.

Voltage-Gated Sodium Channels

Each VGSC comprises a large alpha subunit (∼260 kDa) and one or more beta
subunits (33–36 kDa) (1) (Figure 1). The alpha subunit consists of four homolo-
gous domains (I–IV), each containing six transmembrane segments (S1–S6) and a

Figure 1 Schematic secondary structure of the family of VGSCs, their clas-
sification, tissue distribution, and functional characteristics.
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pore-forming loop between segments V and VI. The alpha subunit contains all of
the machinery necessary for a functional ion channel in addition to the ion pore,
including the voltage sensor (in domain IV), an ion selectivity “filter,” and a seg-
ment responsible for fast inactivation (third intracellular loop between IIIS6 and
IVS1, identifiable by the tripeptide motif, IFM). Thus, a single alpha subunit con-
stitutes a functional VGSC. The alpha subunit also contains the majority of sites
mediating pharmacological modulation of gating or permeation processes, e.g.,
the binding site for tetrodotoxin (TTX) resides in domain I. The alpha subunit also
contains a number of phosphorylation sites, which enable relatively rapid mod-
ulation of channel gating properties (1). Beta subunits appear to serve a number
of functions, including targeting and anchoring channels at specific sites in the
plasma membrane and modulation of the gating properties of the alpha subunits
(2). Genes encoding ten alpha subunits and three beta subunits have been iden-
tified (3). The tissue- and cell-specific expression of these channel subtypes can
be critical in determining the heterogeneity and functional specialization of many
types of cells, including the sensory neurons of the peripheral nervous system that
propagate sensory or nociceptive signals to the brain and the spinal cord. Detailed
reviews of this topic may be found elsewhere (4, 5).

Sensory Primary Afferent Neurons

Sensory neurons are a heterogeneous population of primary afferent neurons that
subserve an array of unique functions, including proprioception, mechanosensa-
tion (vibratory, pressure), thermal sensation (cool, warm), as well as nociception.
The cutaneous afferent, i.e., sensory neurons that innervate the skin and skeletal
muscles, can be differentiated morphologically and functionally. Among these are
myelinated, fast-conductance, large-diameter fibers called A-beta fibers, which
have a low threshold for activation and mainly conduct information about innocu-
ous touch; the thinly myelinated medium-velocity fibers called A-delta fibers,
which are polymodal in nature; and the unmyelinated, slow-conductance small-
diameter fibers called C fibers, most of which have high threshold for activation and
transmit potentially damaging, noxious inputs. Among the population of nocicep-
tive afferents, there are a number of unique subpopulations (6), including afferents
responsive to noxious thermal stimuli (i.e., C-cold fibers); noxious thermal and
mechanical stimuli (i.e., C-mechano-heat fibers); and noxious thermal, mechani-
cal, and chemical stimuli (C-polymodal). This heterogeneity has implications for
injury-induced pain, as observations indicate that subpopulations of afferents may
be far more important than others for the expression of specific pain syndromes.
For example, mechanically insensitive afferents (MIAs) appear to be critical for
the prolonged burning sensation associated with the application of capsaicin, the
pungent component of chili peppers (7).

The most direct way to correlate the expression of sodium channel subtypes
and the biophysical properties of sensory neurons is to record from these neurons
in vivo; determine their biophysical characteristics, such as stimulus response
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properties and action potential conduction velocity; then assess the Na+ channels
present in the neuron by immunohistochemical or molecular biological techniques.
Djouhri, Lawson, and coworkers have used this approach to describe the popu-
lations of sensory neurons that express NaV1.7 (8), NaV1.8 (9), and NaV1.9 (10).
Characterization of sodium channel function in sensory neurons includes patch
recording from teased fiber (11), isolated organ preparations (12), or by record-
ing from the sensory neuron cell body in vitro. The most common of these is the
isolated sensory neuron cell body preparation.

Based on data obtained in vivo, a number of criteria have been used to distinguish
subpopulations of sensory neurons. These include cell body size (13), histological
properties (14–20), chemosensitivity (14, 15), and electrophysiological properties
(14, 15). Cell body size is used as a criterion based on data from cutaneous afferents
indicating that there is a correlation between cell body size and action potential
conduction velocity: Neurons with a small cell body diameter tend to give rise to
slowly conducting axons, whereas neurons with a large cell body diameter tend to
give rise to rapidly conducting axons (21–23). Thus, neurons with a small cell body
diameter are considered putative nociceptors (i.e., conduct high threshold noxious
input), whereas neurons with a large cell body diameter are considered likely
nonnociceptive in nature. Electrophysiological properties may also be used to
distinguish nociceptive from nonnociceptive afferents. Because all high-threshold
afferents, whether they have rapidly or slowly conducting axons, have an inflection
or “hump” on the falling phase of the somal action potential (24), neurons with a
hump are likely to be nociceptive, and the converse is also true.

Voltage-Gated Sodium Channels in Sensory Neurons

Use of in situ hybridization and reverse transcriptase–coupled polymerase chain
reaction (RT-PCR) techniques indicate that nine of the ten alpha subtypes (25, 26)
and all three beta subtypes (27), plus the splice variant of beta 1, beta1A (28),
of sodium channels are present in sensory neurons. Although NaV1.6 and NaV1.7
are present in virtually all sensory neurons, NaV1.1, 1.2, 1.8, and 1.9 are dif-
ferentially expressed among subpopulations of sensory neurons (25). NaV1.1 is
preferentially expressed in large-diameter sensory neurons, NaV1.8 is highly ex-
pressed in small-diameter neurons and to a lesser extent in subpopulations of
medium- and large-diameter neurons, whereas NaV1.9 is only present in small-
diameter neurons. NaV1.2 is variably expressed among sensory neurons, with
most cells lacking a detectable hybridization signal. NaV1.3 (29) and 1.5 (26)
are developmentally regulated such that they are highly expressed in embry-
onic sensory neurons, but expressed at very low levels in adult sensory neu-
rons. NaV1.5 appears to be present in less than 5% of sensory neurons in the
adult rat.

Results from immunohistochemical studies indicate that VGSC subtypes are
differentially distributed throughout the neuron. For example, NaV1.6 appears to
be the channel most highly localized to nodes of Ranvier (30), whereas NaV1.7,
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1.8, and 1.9 are not. In contrast, NaV1.7 appears to be preferentially expressed
in axon terminals (31), NaV1.8 is preferentially expressed in the cell body and
possibly the terminal arbor, whereas NaV1.9 is expressed throughout neurons that
give rise to unmyelinated axons (32). Finally, as discussed below, there is evidence
that the cellular distribution of several of these channels changes following injury.

Electrophysiological characterization of VGSCs present in sensory neurons, in
combination with the neurotoxin TTX, indicates that there are two general classes
of current in sensory neurons: one is blocked by TTX (TTX-sensitive or TTX-S)
and the other is insensitive to TTX (TTX-resistant or TTX-R). TTX-S currents are
blocked by TTX at concentrations in the low nanomolar range. These VGSCs tend
to have a low threshold for activation (between−55 and−40 mV), are rapidly
activating, and are rapidly inactivating. Approximately 50% of these channels are
available for activation at potentials close to resting membrane potential (∼65 mV)
(33). Most TTX-S currents present in sensory neurons recover from inactivation
with a relatively slow time course. However, as discussed below, following nerve
injury, there is an increase in the rate of recovery that appears to coincide with
changes in the expression pattern of TTX-S VGSCs present in sensory neurons
(34).

VGSCs that are TTX-R have been further subdivided into several different
classes of ionic current on the basis of distinct biophysical properties. One of these
TTX-R currents has similar biophysical properties to those of TTX-S channels,
with a low threshold for activation and relatively rapid rates of activation and
inactivation. This low-threshold TTX-R current has been referred to as TTX- R3
(35) or fast TTX-R current (36). An additional TTX-R current with very low
thresholds for activation has also been described [i.e., TTX-R4 (36)]. A more
recent analysis of the low-threshold TTX-R current in sensory neurons suggests
that this current is carried by NaV1.5 (26).

A second TTX-R current is resistant to TTX at concentrations>10 µM (33,
35, 37–39). This current has a high threshold for both activation (∼−36 mV) and
steady-state inactivation, activates and inactivates relatively slowly, but recovers
from inactivation or reprimes rapidly (33). Furthermore, data from these studies
show that this current accounts for the high activation threshold observed in no-
ciceptive afferents. Because the current is still largely available for activation in
the presence of sustained membrane depolarization and recovers from inactiva-
tion rapidly with membrane hyperpolarization, these properties suggest that this
current can sustain low levels of activity when other channel subtypes are inacti-
vated by the depolarization potential (39). This high-threshold TTX-R current has
been referred to as TTX-R1 [(35), see also References 36, 40]. There is compelling
evidence to suggest that NaV1.8 underlies this high-threshold TTX-R current. Crit-
ically, the nuclear injection of NaV1.8 cDNA into sensory neurons isolated from
NaV1.8 knockout mice results in the expression of a TTX-R current identical to
TTX-R1 (41).

A third TTX-R current is also resistant to TTX at concentrations>10 µM.
This current has very unique biophysical properties compared to the rest of the
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family of VGSCs. It has a very low threshold for activation (between−90 and
−70 mV) and an availability curve with a midpoint of∼−44 mV (40). These
two properties enable current activation over a large voltage range and can have
a profound influence on neuronal excitability (42). This current has been referred
to as a persistent current. Because the activation rate of this current is very slow, it
is unlikely to contribute to the action potential but may contribute to the determi-
nation of the resting membrane potential and membrane depolarization associated
with subthreshold stimuli (43). NaV1.9 appears to be the channel underlying this
persistent current because (a) there is a good correlation between the properties of
neurons that express the persistent current and those that express NaV1.9 (32, 40),
(b) this current is detectable in dorsal root ganglia (DRG) neurons from NaV1.8
knockout mice, and (c) the sequence of NaV1.9 predicts a channel that will be
resistant to TTX (44, 45).

Functional characterization of specific VGSCs in sensory neurons has been in-
hibited by the lack of selective channel blockers. Classic channel blockers, such
as local anesthetics, antiepileptics, and membrane stabilizers, show little speci-
ficity among channel subtypes (46, 47). Although pharmacological tools do not
yet enable a functional characterization of specific VGSCs in sensory neurons,
several novel approaches in combination with available pharmacological tools
have yielded important results. First, it is clear that TTX-S channels mediate ac-
tion potential conduction along both myelinated and unmyelinated axons. This is
based on the observation that TTX application to distal axons completely blocks
conduction in the vast majority of studies reported to date (12, 24). Thus, even
though there is evidence for functional TTX-R channels in axons (11), the density
of these channels appears to be insufficient to mediate conduction in the majority
(>92%) of unmyelinated and all myelinated axons (48). Given that rapid signaling
of nociceptive stimuli requires action potential conduction, this observation illus-
trates a basis for the effectiveness of blocking TTX-S channels for pain control.
Second, it is also clear that the TTX-R channel NaV1.8 contributes to the somal
action potential of high threshold sensory neurons in vivo (24). In the presence of
sustained membrane depolarization, resulting in the inactivation of TTX-S, NaV1.8
is sufficient to enable action potential generation in the majority of high-threshold
afferents (49). However, as is more often the case, NaV1.8 appears to work in
conjunction with TTX-S currents in the generation of action potentials. In such
cases, the higher threshold for activation and the slower rates of activation and
inactivation enable NaV1.8 to have a unique impact on the action potential wave-
form. TTX-R channels only contribute significantly to ion flux at later stages of
the action potential, most importantly during the falling phase (50). At this stage,
these channels appear to delay membrane repolarization enabling substantial Ca2+

influx. This Ca2+ influx has been shown to regulate a number of cellular processes
and may be important for initiating transcriptional changes in nociceptive afferents
in response to injury.

There is evidence that NaV1.8 channels are present and functional in periph-
eral terminals of nociceptive afferents. Brock and colleagues used an in vitro
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preparation to study corneal afferents (12, 51, 52). These investigators observed
that TTX-R channels mediated action potential initiation in polymodal nocicep-
tive afferents, and that these initiation sites are very close to, if not at, the terminal
endings (51). Finally, there is evidence that TTX-R currents may contribute to
the release of transmitter from the central terminals of nociceptive afferents. This
evidence comes from an in vitro preparation utilized to study synaptic interactions
between primary afferent and dorsal horn neurons (53). In this preparation, it ap-
pears that ATP released from the primary afferent terminal is able to act back on
the afferent terminal to facilitate additional release of glutamate. Importantly, the
additional glutamate release was dependent on active conduction in the afferent
terminal that, in turn, was dependent on the activation of TTX-R channels in the
afferent terminal.

SODIUM CHANNELS AND HYPERALGESIA

Somatic/Cutaneous Inflammatory Hyperalgesia

Tissue injury results in local inflammation. Pain is one of the cardinal signs associ-
ated with this inflammation, and this pain reflects an increase in the excitability of
afferent neurons innervating the injured tissue. This increase in excitability reflects
the actions of a number of inflammatory mediators, including ATP, bradykinin,
serotonin, cytokines such as TNF alpha, and prostaglandins. That analgesic agents,
such as the nonsteroidal antiinflammatory drugs (NSAIDs), act to inhibit the pro-
duction of prostaglandins from arachidonic acid by blocking cyclo-oxygenases
(COX) (54) and are highly efficacious in alleviating inflammatory hyperalge-
sia (55) suggests that prostaglandins are critical inflammatory mediators that
promote pain.

The Effect of Prostaglandins on Sensory Primary Afferent

Prostaglandins are often described as a prototypic hyperalgesic agent because
they produce hyperalgesia and/or nociceptor sensitization while producing little
direct activation of nociceptive terminals. Prostaglandins have been shown to sen-
sitize nociceptors to all modes of stimuli tested, including mechanical, thermal,
and chemical. For example, a continuous infusion of prostaglandin E2 (PGE2) in-
creased the frequency of bradykinin-evoked action potentials recorded from the
plantar nerve (56) or from the saphenous nerve (57). Several lines of evidence sug-
gest that prostaglandins sensitize primary afferent neurons through a direct action
on the sensory neurons. This evidence includes (a) the presence of receptors on
the sensory neurons, (b) time course for behavioral changes, (c) absence of other
detectable changes in tissue, and probably most compelling, (d) the demonstra-
tion of sensitization of isolated neurons in vitro. Importantly, use of the isolated
neuron in vitro has enabled identification of mechanisms underlying the actions
of inflammatory mediators, such as prostaglandins.
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The Effect of PGE2 on Voltage-Gated Sodium Channels

PGE2 modulates TTX-R sodium current in sensory neurons in a manner consis-
tent with an underlying mechanism of sensitization; the current activates at more
hyperpolarized potentials and the magnitude of the current is increased as are
its rates of activation and inactivation (49). As discussed above, TTX-R sodium
currents are essential for action potential generation in the majority of nocicep-
tive neurons. Thus, the ability of PGE2 to modulate the activity of these channels
presents a highly effective mechanism by which PGE2 can selectively enhance the
excitability of the nociceptive neurons.

Support for a causal relationship between PGE2-induced hyperalgesia and
TTX-R sodium current has been provided by using an antisense deoxynucleotide
(ODN) that specifically disrupts the synthesis (“knockdown”) of one of the TTX-R
VGSCs, NaV1.8 in the DRG in vivo (58). Antisense, but not a control mismatch,
ODN treatment reduces the expression of NaV1.8 by∼50%, and rats treated with
the antisense ODN show a significant decrease in PGE2-induced mechanical hy-
peralgesia (58). Because NaV1.8 is normally expressed predominantly in unmyeli-
nated, nociceptive C fibers, these data show that acute PGE2- induced hyperalgesia
is mediated by nociceptive C fiber activity that is sustained by TTX-R sodium cur-
rent. The data also implicate NaV1.8 as the critical VGSC subtype that is necessary
for the initiation of hyperalgesia.

The Effect of Other Acute Inflammatory Mediators
on Voltage-Gated Sodium Channels

To date, a number of acute inflammatory mediators, including adenosine (59),
serotonin/5-hydroxytryptamine (5-HT) (60–62), bradykinin (57, 63), endothelin-
1 (64–68), and plasma epinephrine (69), have also been demonstrated to directly
modulate the excitability of primary afferents. Their direct action on primary affer-
ent indicates that the receptors for these mediators must be expressed on nociceptive
neurons. These mediators, with the exception of bradykinin (and possibly ET-1),
have been shown to modulate the activity of TTX-R sodium current in a manner
similar to that seen for PGE2 (59, 60, 62, 64). Modulation of TTX-R sodium cur-
rent thus appears to be a common mechanism that underlies the sensitizing effect
of multiple inflammatory mediators.

Neurotrophic Factors and their Effect on
Voltage-Gated Sodium Channels

In addition to the inflammatory mediators listed above, which act to alter the
activity of VGSCs locally, there are a number of mediators that influence neuronal
excitability by regulating gene transcription. The most extensively studied of these
molecules, at least with respect to their role in nociceptive processing, include
nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial
cell–derived neurotrophic factor (GDNF) and related factors. During development,
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these compounds act as survival factors. In the adult, they appear to control the
phenotype of sensory neurons. Because the concentration of these compounds,
particularly that of NGF, is increased in the presence of inflammation, NGF is
able to drive phenotypic changes in sensory neurons innervating the site of injury.
Consistent with this suggestion is the observation that peripheral administration
of NGF induces a localized, delayed hyperalgesia that is long lasting (70–72),
suggesting that NGF induces the expression of proteins in the sensory neurons that
enhance their excitability. There is evidence that NGF stimulates an upregulation
of NaV1.8 in small DRG cells as it enhances the density of TTX-R current in
specific subpopulations of sensory neurons (73). In cultured neurons, NGF acutely
enhances the excitability of small DRG neurons by enhancing TTX-R current (74).
Thus, NGF may enhance nociceptive afferent excitability, in part, by exerting both
an acute influence on the gating of TTX-R sodium current (its contribution from
NaV1.8 and/or NaV1.9 has not been defined) and a prolonged influence by an
increased expression of NaV1.8. On the other hand, NGF has no effect on the
expression of NaV1.9 (75). Thus, the increase in TTX-R is likely to be due to the
upregulation of NaV1.8.

NGF also stimulates the synthesis of BDNF in DRG neurons positive for NGF
receptors, i.e., trkA-positive cells (76). Thus, BDNF is a transmitter in afferent
fibers. The function of BDNF has been derived mainly from CNS studies, where
BDNF may induce long-term potentiation and may evoke neuronal excitation by
activating a sodium current (77). It was shown recently that BDNF may stimulate
NaV1.9 through a direct interaction between its activated receptor, called trkB, and
NaV1.9 in the central nervous system (78). However, because BDNF has not been
found to alter sodium currents in the DRG cells (79), it has yet to be determined
whether such action plays any role in inflammatory hyperalgesia.

Experimental Models of Inflammatory Hyperalgesia

Although the pharmacological and in vitro approaches described above have pro-
vided compelling evidence that implicate TTX-R sodium channels as an underly-
ing mechanism of nociceptive hypersensitivity, they do present the caveat that the
concentrations used in the analyses may not be physiologically relevant (particu-
larly the doses of neurotrophic factors). Thus, the role of TTX-R in inflammatory
hyperalgesia has to be validated in experimental models that more closely resem-
ble clinical conditions. A large literature has elucidated many of the mechanisms
of cutaneous inflammatory hyperalgesia by employing animal models in which
inflammation is induced, typically in a hind limb, by subcutaneous administra-
tion of a small amount of a chemical reagent that stimulates a local inflammatory
response. The most common reagents used include formalin, carrageenan (a sea-
weed extract), or complete Freund’s adjuvant (CFA). Although these reagents all
cause local tissue damage as indicated by mast cell degranulation, neutrophil and
macrophage infiltration, plasma extravasation, or tissue necrosis, the extent and
the characteristics of the injury, as well as the duration of hyperalgesia, vary sub-
stantially among these models. Models of neurogenic inflammation have also been
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developed by the local administration of algogenic substances, such as capsaicin,
which activate the release of excitatory neurotransmitters (e.g., substance P) from
peripheral nociceptive termini that, in turn, stimulate an immune response.

Collective data from these studies also support a role of TTX-R sodium chan-
nels in inflammatory hyperalgesia. First, carrageenan- as well as CFA-induced
hyperalgesia give rise to a significant upregulation of TTX-R current (79, 80) and
the expression of NaV1.8 in the DRG cells (79, 81). Both carrageenan and CFA
stimulate the production of NGF in immune cells (82, 83), suggesting that NGF
production may be linked to the chemical-induced upregulation of NaV1.8 (73, 84).
Second, the use of antisense ODNs that specifically target NaV1.8 to knockdown
(i.e., reduce) the expression of this channel subtype in the lumbar DRG is effective
in preventing the hyperalgesia measured four days after injection of CFA unilater-
ally into the rat hind paw (85). Similar results were obtained with an experimental
model of urinary bladder inflammation, where knockdown of NaV1.8 was effective
in attenuating the persistent inflammation-induced sensitization of bladder C fibers
(86). Thus, NaV1.8 appears to contribute not only to the initiation of inflammatory
hyperalgesia, but also to its maintenance.

Although the bulk of the data collected to date implicate a role for NaV1.8 in
inflammatory hyperalgesia, it should be noted that there is also evidence for contri-
bution of other channels, including NaV1.9 and NaV1.7. Recent evidence suggests
that NaV1.9 also may be a target for modulation by inflammatory mediators, as
the persistent current is dramatically increased following G-protein activation with
the nonhydrolyzable GTP analog, GTPγ S (42). The GTPγ S-induced increase in
persistent current was apparently sufficient to induce spontaneous activity in some
neurons. Other lines of evidence implicating a protential role for NaV1.9 come from
studies involving neurotrophic factors and channel expression. Specifically, NGF
and GDNF induce increase in NaV1.9 expression (75). Evidence in support of a
role for NaV1.7 comes from the observation that a brief exposure of NGF results in
a dramatic redistribution of the channel to peripheral terminals of sprouting axons
(87). It is also worth noting that in at least one in vitro study designed to identify
mechanisms underlying 5-HT-induced increases in excitability, an increase in a
TTX-S current was observed in some neurons (60).

SODIUM CHANNELS IN NEUROPATHIC PAIN

VGSCs in sensory neurons are thought also to play a critical role in a number of
chronic, painful neuropathies that arise from injury to peripheral nerves. Symp-
toms of neuropathic pain include abnormal hypersensitivity to innocuous touch
(allodynia) and noxious mechanical or thermal stimulation (hyperalgesia). Clinical
neuropathic pain is often intractable and can arise from a variety of disease states
(e.g., diabetic neuropathy, trigeminal neuralgia, postherpetic neuralgia, AIDS) or
traumatic injuries, nerve compression, or chemotherapy.

It has long been appreciated that physical injury to peripheral nerves (e.g.,
sciatic nerve branches that innervate the foot) that is mimicked experimentally by
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transection of the nerves’ axon, results in rapid redistribution of VGSCs along
the axon and dendrites, and spontaneous firing of the injured nerve (88, 89). The
alteration in the excitability of the injured nerve is considered to be critical for
the incidence of spontaneous pain in the absence of external stimuli (90). As the
activity of VGSCs is necessary for action potential generation in all neurons, the
changes in VGSCs associated with a transected nerve implicate a role of VGSCs
in the hyperexcitability of the injured nerve.

It is well established that both TTX-R and TTX-S sodium currents are altered
upon nerve transection, based on functional and gene expression analysis (44,
91–95). However, the relationship between changes in channel expression and
changes in neuronal excitability is tenuous. A recent study involving transection
of the vagus neurons demonstrates that axotomy-induced changes in TTX-R and
TTX-S currents result in a decrease in excitability (96). Furthermore, given that
partial nerve injuries are the ones most commonly associated with the develop-
ment of pain, the relevance of the nerve transection model to clinical conditions
of neuropathic pain arising from injury to peripheral nerve is less clear. However,
data from other experimental models of peripheral nerve injury, as well as pharma-
cological evidence, suggest that the VGSC is a reasonable target for the treatment
of neuropathic pain (see below). We limit our discussion to findings obtained from
the models of surgically induced injuries to the sciatic nerve (97–101) because
they represent the most commonly used models from which our current state of
knowledge on the VGSC in neuropathic pain has been derived.

TTX-S and TTX-R Sodium Currents in Neuropathic Pain

The first sciatic nerve injury model involves a complete transection of the sciatic
nerve. Because the sciatic nerve is comprised of afferents with cell bodies mainly
in L4 and L5 ganglia, such an injury directly damages∼50% of the neurons in
each ganglion. Such injury induces a rapid (days) onset of spontaneous, ectopic
discharge from the site of injury, which, unlike activities observed in the presence
of inflammation, is primarily carried by rapidly conducting A fibers. In a partial
nerve injury model where only the L5 or the L5 and L6 spinal nerves are transected
or tightly ligated, similar changes in the A fiber activity are restricted to the injured
DRG (102–105) but not among the population of uninjured afferent from L4 (105).
In the injured DRG, a significant upregulation of TTX-S current and a reduction
in the TTX-R current in the small DRG are observed (34, 48). The increase in
TTX-S is thought to be due to an enhanced expression of the channel subtype
NaV1.3, which is normally expressed at very low levels in the DRG of adult rats
(29, 92, 106). The downregulation of TTX-R in the small DRG is due to decreased
expression of the NaV1.8 and NaV1.9 subtypes (44, 94, 95).

NaV1.3, Ectopic Discharge, and Neuropathic Pain

The evidence that supports a role for NaV1.3 in mediating ectopic activity in
the injured neurons is based on the following observations: First, the channel is
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dramatically upregulated following nerve injury; second, the biophysical proper-
ties of the channel should enable the channel to support higher rates of activity; and
third, nerve injury is associated with an increase in membrane potential oscilla-
tions that appear to underlie spontaneous activity, and these oscillations are TTX-S.
Ectopic discharge (and thus NaV1.3 expression) has been proposed to underlie neu-
ropathic pain because the time course for the development of membrane potential
oscillations and ectopic activity correlates very well with the time course for the
development of neuropathic pain behavior. Furthermore, the ectopic activity can
be suppressed by sodium channel blockers such as lidocaine, which is clinically
effective in treating neuropathic pain (see below). A recent study using pharma-
cological doses of GDNF to prevent sensory hypersensitivity in nerve-injured rats
showed that this effect was concomitant with a block of A fiber ectopic discharge
and normalization of NaV1.3 expression in the injured DRG (105).

On the other hand, lidocaine blocks all VGSCs and is not selective for NaV1.3,
whereas GDNF normalizes the nerve injury-induced changes in the expression
of many other proteins besides NaV1.3 in the DRG and spinal cord (107); thus,
these drugs lack the target specificity to provide a definitive link between NaV1.3
expression and neuropathic pain. Furthermore, NaV1.3 is a TTX-S channel, but
TTX applied to the injured nerve only partially reverses neuropathic pain behavior
(108).

Some data also question whether NaV1.3 expression alone is sufficient for the
onset of ectopic activity (e.g., the channel is upregulated in small DRG neurons,
but they do not become spontaneously active) (96, 102, 105). The role of ectopic
discharge in the manifestation of neuropathic pain is also not clear. Ectopic activity
is exclusively associated with transected fibers, which are incapable of transmitting
evoked sensory input. Neuropathic pain states, on the other hand, are generally
measured in animal models as diminished response thresholds from evoked stimu-
lation. Furthermore, in at least one experimental nerve injury model, ectopic activ-
ity of the injured fibers is highest soon after injury, but is significantly diminished
within one week by almost 75% (103), whereas neuropathic pain behavior in the
injured animal is maintained at the same level for many months (104, 109). There
is also a growing body of evidence implicating a role of the remaining uninjured
primary afferent of the sciatic nerve in maintaining sensory hypersensitivity (see
below). Thus, ectopic activity of the injured neurons may be insufficient for the
manifestation of neuropathic pain, at least as measured routinely in experimental
models.

NaV1.8 and Neuropathic Pain

A knockdown of NaV1.8 in neuropathic rats in a model of mononeuropathy (L5/L6
spinal nerve ligation injury) effectively reverses neuropathic pain, bringing the sen-
sory thresholds to thermal and tactile stimuli back to control levels (48, 110). This
approach provides direct evidence that the activity of a sodium channel subtype in
the sensory primary afferent is necessary for the expression of neuropathic pain.
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It also suggests that primary afferent fibers that contain functional NaV1.8 after
nerve injury may be “sensitized.” The important role of NaV1.8 in action potential
generation and the additional observation that this channel subtype also enables
the DRG cells to fire repetitively upon stimulation provide functional evidence to
support such a hypothesis (111).

As mentioned above, injured primary afferents show a significant downregula-
tion of NaV1.8; thus, the site of action of NaV1.8 is not likely to be in the injured
nerve fibers. In the adjacent uninjured L4 DRG cells, however, the level of expres-
sion of NaV1.8 (95) and the density and kinetics of the TTX-R current (48) are
not different from control, suggesting that the expression of NaV1.8 is maintained.
However, a significant upregulation of the channel protein is apparent by day 2
after injury in the sciatic nerve (48). The upregulation of NaV1.8 immunoreactiv-
ity is correlated with an increase in TTX-R compound action potential at C fiber
conduction velocity. A minor TTX-R, A fiber conduction velocity is also evident.
These data demonstrate a functional reorganization of NaV1.8 along unmyelinated
fibers and in some myelinated fibers. Antisense mediated knockdown of NaV1.8
immunoreactivity and TTX-R current in these uninjured axons correlate with the
reversal of both mechanical and thermal hypersensitivity, suggesting that this re-
organization of NaV1.8 activity along the uninjured axons may be necessary for
expression of neuropathic pain in the injured rat (48). These as well as other data
(112, 113), argue that abnormal activity in the uninjured primary afferent may be
critical for the observed hypersensitivity to sensory input in the injured animal.
A redistribution of NaV1.8 along the injured sciatic nerve has been also observed
in the chronic constriction injury model of neuropathic pain (114), and NaV1.8
immunoreactivity is evident in peripheral nerve tissues from patients with chronic
neuropathic pain (115, 116).

The use of antisense oligonucleotides to disrupt the expression and function
of NaV1.8 has also been applied to other models of chronic inflammatory and
visceral pain (85, 86). These findings further substantiate the role of NaV1.8 in
the hypersensitivity of primary afferent neurons, suggesting that the changes in
NaV1.8 seen in the L5/L6 spinal nerve injury model may have wider implications
and potential clinical relevance.

Transgenic mice lacking NaV1.8 provide an alternative animal model to evaluate
the role of NaV1.8 in neuropathic pain (41). Nerve injury elicits thermal hyperalge-
sia and tactile hypersensitivity by day 3 in both wild-type and NaV1.8-null mutant
mice, suggesting that neuropathic pain is developed and maintained despite the
lack of NaV1.8 (117). An important confounding factor in the interpretation of
the behavioral data in these animals, however, is the uncertain phenotype of the
peripheral nervous system of these mice. The NaV1.8-null mutant mice exhibit an
upregulation of TTX-S NaV1.7 in the C type DRG neurons and modified activity
of the C fibers (41). Other changes that may not be in common with the wild-type
control after nerve injury may also occur. Complete elimination of the TTX-R cur-
rent carried by NaV1.8 has a profound effect on the conductance of other channels,
including sodium channel subtypes, the emergence of non-Na+ action potentials,
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and calcium channel activity (111). How these biophysical characteristics may in-
fluence the neurons’ response to nerve injury is not known, making interpretation
of data from this transgenic model difficult.

NaV1.9 and Neuropathic Pain

To date, there is little data implicating a role for NaV1.9 in neuropathic pain. In
fact, there are two lines of evidence to suggest the channel contributes little to
these behavioral changes. First, based on the kinetic properties of this channel
and computer analysis, it has been proposed that this channel is active at the
resting membrane potential and may modulate the resting potential of nociceptors
and their response to subthreshold stimuli (43). However, under conditions of
persistent excitability, most of these channels will be in the inactivated state and
not available for opening. Second, antisense oligonucleotide that targets NaV1.9
shows that a knockdown of this channel subtype produces no effect on either
thermal hyperalgesia or tactile hypersensitivity in the neuropathic rat (85). The
antisense treatment in sham-operated rats also does not show any effect on baseline
sensory thresholds.

SODIUM CHANNEL BLOCKERS AS
ANTIHYPERALGESIC DRUGS

As mentioned above, a prominent role for VGSCs in the pathophysiology of an
injured neuron is supported by the clinical effectiveness of agents that act primarily
through a common, use-dependent block of sodium channels, e.g., local anesthet-
ics, type 1b antiarrhythmics, and anticonvulsants (118), in the treatment of many
types of chronic, in particular, neuropathic pain (119, 120).

Local Anesthetics/Antiarrhythmics

Although local anesthetic drugs have been considered as alternative therapy in
certain types of acute pain (121–125), the predominant focus has been on chronic
neuropathic pain syndromes, particularly because many of these appear unre-
sponsive to treatment with standard opioids and nonsteroidal antiinflammatory
drugs (119, 120). Local anesthetics have been reported to provide effective relief
in painful diabetic polyneuropathy (126–128), neuralgic pain (129–132), lumbar
radiculopathies (133, 134), complex regional pain syndrome (CRPS) I and II (135–
137), and traumatic peripheral nerve injuries (138–141). A caveat, however, is that
the majority of these studies represent clinical series and case reports, whereas
only a comparatively small number involve randomized, single or double blind,
placebo-controlled trials (142). Moreover, despite this capability for achieving
efficacy in many different chronic, intractable pain conditions, the full analgesic
potential of these agents has been frequently limited by the onset of numerous
adverse, particularly CNS-related, side-effects, e.g., nausea and emesis, dizziness



30 Nov 2003 15:9 AR AR204-PA44-16.tex AR204-PA44-16.sgm LaTeX2e(2002/01/18)P1: GCE

SODIUM CHANNELS AND PAIN 385

Figure 2 Local anesthetic/type 1b antiarrhythmic drugs
used as analgesics.

and light-headedness, somnolence, ataxia, and tinnitus. Cardiotoxicity can also be
problematic particularly in the elderly population (143).

Intravenous lidocaine (Figure 2) is by far the most prevalent local anesthetic
used for the treatment of neuropathic pain. In addition to the routine acute effect, it
has been reported to produce pain relief for several days, an effect that far outlasts
drug elimination from the plasma (128, 144, 145). The mechanism(s) related to this
phenomenon are presently unknown. Other local anesthetics (see Figure 2) that
have been used include flecainide (146, 147) and the oral agents tocainide (129) and
type Ib antiarrhythmic agent, mexiletine (127, 139). Mexiletine, in particular, has
been used relatively successfully either as a monotherapy or sequentially following
an initial lidocaine infusion. Indeed, IV lidocaine has been increasingly advocated
as a diagnostic aid for the presence of pain associated with nerve injury (132, 148)
and for its predictive value of potential analgesic efficacy of oral local anesthetic
agents, such as mexiletine for follow-up therapy (138, 141).

In animal models of neuropathic pain, the local anesthetics appear to have a
similar profile to the clinical experience, being effective against mechanical and/or
thermal hyperalgesia and tactile and/or cold allodynia but with differential sensi-
tivity and limited efficacy (149–155). In most cases, the ceiling for the analgesic
effect was almost always associated with the appearance of side effects, e.g., se-
dation; loss of righting reflex; and, at high doses, convulsions. In another model
representative of facilitated processing of sensory information, the formalin test,
lidocaine (149) and mexiletine (153) attenuated both phases of the behavioral
response. A critical aspect of the local anesthetic analgesic action is the ability,
at low subanesthetic (therapeutic) concentrations, to block the spontaneous and/or
evoked repetitive, ectopic impulse activity in afferent fibers that is mediated by
both TTX-S and the slowly inactivating TTX-R sodium channels (156–160).
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Lidocaine can suppress the generation of this abnormal impulse traffic and re-
store normal firing rhythm by acting either directly at the site of origin or at
distant sites (156–160). Consequently, these agents are able to target injured
nerves on the basis of their high-frequency, repetitive firing characteristics, while
having minimal impact on normal, somatosensory (i.e., nociceptive) neuronal
function.

Anticonvulsants

Since Trousseau in 1885 noted that the paroxysmal component of trigeminal neu-
ralgia was remarkably similar to epilepsy and termed it epileptiform neuralgia,
anticonvulsant drugs (see Figure 3) have become among the more commonly
used pharmacological interventions for the treatment of chronic pain (for reviews,
see 161–163). It has been a common perception, possibly influenced by these
early reports, that drugs of this class provide effective and sustained relief only
when there is a paroxysmal, lancinating component to the pain, e.g., trigemi-
nal neuralgia (164, 165). Although neuralgic pain remains a primary indication,
carbamazepine and, to a more variable extent, diphenylhydantoin (also known
as phenytoin) can also be effective analgesics in other types of painful, periph-
eral neuropathies, such as diabetic neuropathy (166–168). When effective, the
general clinical impression of the established anticonvulsants has been that pain
relief is almost always obtained concomitantly with numerous adverse side effects
(164–166) and/or limitations in efficacy (165, 167). The adverse side-effect pro-
file of these anticonvulsants can be severe and frequently includes CNS effects,
such as dizziness, ataxia, lightheadedness, somnolence, and alterations in mood.
Hepatic dysfunction and leukopenia have also been reported to occur with carba-
mazepine. The marginal analgesic efficacy of phenytoin and, to a lesser extent,
carbamazepine at doses not associated with side effects is also reflected in most
experimental animal models of peripheral nerve injury (150) and inflammation
(169).

Recent years have seen the emergence of several novel antiepileptic agents,
exemplified by lamotrigine (170), which may also have utility in the treatment
of chronic pain but with a much improved therapeutic margin of safety over
the established drugs, despite the possible need for higher doses than those re-
quired for anticonvulsant activity. Lamotrigine (Figure 3) produces a voltage- and

Figure 3 Anticonvulsant drugs used as analgesics.
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frequency-dependent block of sodium channels with a subsequent reduction in
the presynaptic release of the excitatory amino acids glutamate and aspartate
(171, 172). Currently in Phase III trials for neuropathic pain, lamotrigine has been
reported to show a promising analgesic effect in trigeminal neuralgia (173); di-
abetic neuropathy (174); and either postherpetic neuralgia, causalgia, or phan-
tom limb pain (175). However, in a further randomized, double-blind, placebo-
controlled study of intractable neuropathic pain, lamotrigine was found to be in-
effective (176). Lamotrigine has been found to produce an antihyperalgesic and
antiallodynic effect in the rodent models of neuropathic and/or inflammatory pain
(169, 177–179), although the effect does appear to be modality specific. In acute
pain models, lamotrigine appeared ineffective against an acute, high-threshold
thermal noxious stimulus (177, 178), implying a selective interaction with path-
ways associated with pathophysiological events rather than with normal sensory
nociceptive function consistent with its use-dependent block of sodium channels.

Voltage-Gated Sodium Channels in Sensory Neurons as
Targets of Local Anesthetics and Anticonvulsants

A principal target of local anesthetic and anticonvulsant drugs in the most preva-
lent forms of neuropathic pain is most likely the sodium channels located in the
peripheral sensory neuron. These channels may play an important role not only in
the initial injury discharge but also in spontaneous, ongoing, and stimulus-evoked
pain, and dysesthesias characteristic of many types of peripheral neuropathies. In
clinical studies, lidocaine applied topically to either the skin (131, 180), region of
the nerve supplying the painful foci (145, 181, 182), or neuroma (140) produced
complete relief of spontaneous, ongoing, and stimulus-evoked pain. Moreover, in
animal models of inflammatory and neuropathic pain, local application of bupiva-
caine produced a reversal of mechanical hyperalgesia (183) and allodynia (184),
respectively. These studies would suggest, therefore, that in chronic pain of in-
flammatory or neuropathic origin, blockade of sodium channels in the sensory
neurons constitutes an important site of action for the antihyperalgesic actions of
these drugs.

CONCLUDING REMARKS

In summary, TTX-R sodium current is essential in the establishment of hyper-
excitability of sensory neurons that contribute to inflammatory hyperalgesia and
nerve injury-induced pain. Data support NaV1.8 as the predominant channel in-
volved in gating this sodium current. It remains to be determined whether selective
blockade of either NaV1.8 and/or NaV1.9 or, alternatively, any of the TTX-S chan-
nels in peripheral sensory neurons will produce either an improvement in analgesic
efficacy or the therapeutic window over currently available nonsubtype selective
agents. However, the discrete localization of the TTX-R channels, in particular
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NaV1.8, may be the crucial factor in providing a novel opportunity for drugs tar-
geted at these channels to achieve both the desired degree of analgesic efficacy
and safety profile.

The Annual Review of Pharmacology and Toxicologyis online at
http://pharmtox.annualreviews.org
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